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We present a moving horizon estimation (MHE) application for multi-zone low-density (LDPE) polyethy-
lene tubular reactors. The strategy incorporates a first-principles dynamic model comprised of large sets
of nonlinear partial, differential and algebraic equations (PDAEs). It was found that limited temperature
measurements distributed along the reactor are sufficient to infer all the model states in space and time
and to track uncertain time-varying phenomena such as fouling. A full discretization strategy and a state-
of-the-art nonlinear programming (NLP) solver are used to enable the computational feasibility of the
approach. It is demonstrated that the MHE estimator exhibits fast performance and is well suited for
oving horizon estimation
DPE
istributed reactors
artial differential equations
iscretization
ncertainty
arge-scale

applications of industrial interest.
Published by Elsevier Ltd.
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. Motivation and background information

Low-density polyethylene (LDPE) is an important commodity
olymer in today’s economy due to its high flexibility and rela-
ively low-cost (Knuuttila, Lehtinen, & Nummila-Pakarinen, 2004).
DPE is mostly produced in tubular reactors by free-radical poly-
erization of ethylene at supercritical conditions (2000–3000 atm

nd 150–350 ◦C). A typical tubular reactor and corresponding tem-
erature profiles for the reactor core and jackets are sketched in
ig. 1. This type of reactor consists of long pipes (1–3 km) with small
nner diameters (5–10 cm) and thick reactor walls (2–5 cm) which
re divided into several reaction and cooling zones. Each zone is
quipped with a jacket cooling system used to remove the large
mounts of heat produced by polymerization. Multiple side streams
ontaining monomer, comonomer, chain transfer agent (CTA) and
nitiators can be fed along the reactor to control the temperature

rofile and the resulting polymer properties. The large heat trans-

er areas and low degrees of back-mixing resulting in these units
ermit the high throughput production of LDPE resins with unique
rocessability and end-use properties.

∗ Corresponding author. Tel.: +1 412 268 2238.
E-mail address: vzavala@andrew.cmu.edu (V.M. Zavala).
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Despite the multiple benefits offered by LDPE tubular reactors,
here exist several factors limiting their performance. The first issue
rises due to their distributed and multivariable nature which gives
ise to complex interactions along the pipe. The most common
pproach to cope with this complexity is to find feasible operat-
ng conditions able to produce a particular grade by trial and error
nd/or experience. The resulting operating recipes are enforced
trictly through an appropriate regulatory control system. While
hese recipes work well in many cases, they tend to be rather con-
ervative and need to be constantly adapted for each new grade
ncorporated into the product portfolio. A second important prob-
em arising in LDPE reactors is the persistent and slow deposition
f polymer on the inner reactor walls (Buchelli et al., 2005a,b;
acunza, Ugrin, Brandolin, & Capiati, 1998). The resulting fouling
ayer is highly insulating and severely decreases the heat-transfer
ate to the cooling jacket. Since the polymerization reactions are
ighly exothermic, the production rate needs to be dropped pro-
ressively in order to keep the temperature profile within safe limits
nd avoid thermal runaway. The impact of fouling on the overall

rofitability of high-throughput LDPE reactors is extremely large.

The potential economic benefits and high operational complex-
ty of LDPE reactors have motivated research efforts in many areas.
xtensive experimental studies have been performed in order to
nderstand the fundamental interactions between the reactor

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:vzavala@andrew.cmu.edu
dx.doi.org/10.1016/j.compchemeng.2008.10.008
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Fig. 1. Schematic representation of multi-zone LDPE tubular react

esign and operating conditions and the resulting polymer prop-
rties (Goto et al., 1981; Kim & Iedema, 2004; Luft, Bitsch, & Seidl,
977). This increased level of understanding has translated into
umerous first-principles models of different complexity (Bokis,
001; Brandolin, Lacunza, Ugrin, & Capiati, 1996; Kiparissides,
erros, & McGregor, 1993; Kiparissides et al., 2005; Zabisky, Chan,
loor, & Hamielec, 1992). In addition, the recent use of parameter
stimation techniques has improved significantly the predictive
apabilities of these models (Kiparissides et al., 2005; Zavala &
iegler, 2006). Some of these models have been used for off-line
asks such as reactor design and dynamic transient analysis
Häfele, Kienle, Boll, & Schmidt, 2006; Pertsinidis, Papadopoulos,

Kiparissides, 1996). As a natural step, it is desired to use these
odels to perform on-line tasks such as real-time optimization

nd model-based control (Kiparissides, Verros, Pertsinidis, &
oosens, 1996; Zavala & Biegler, 2008). In order to do this, it is
ecessary to develop an appropriate on-line estimation strategy
ble to accommodate the rigorous model in on-line industrial
nvironments where limited and noisy measurement information
nd uncertain time-varying phenomena are usually encountered.
n this context, moving horizon estimation (MHE) represents an
ttractive alternative.

As with any estimation strategy, the objective of MHE is to recon-
truct the full state of the process using the available measurement
nformation. The main difference between MHE and recursive esti-

ation techniques such as Extended Kalman Filters and Luenberger
bservers is that the estimator problem is cast directly as an on-
ine optimization problem (Rawlings & Bakshi, 2006; Haseltine &
awlings, 2005). Crucial advantages of this approach are the ability
o handle bound constraints to filter out estimation regions with no
hysical meaning, the ability to handle sophisticated dynamic mod-
ls in non-standard forms (e.g. boundary conditions on complex
omains) and the ability to use computationally efficient numer-

cal optimization algorithms. Despite these advantages, the direct
pplication of MHE to LDPE processes is complicated by the com-
utational complexity of the associated tubular reactor models. For
pplications of industrial interest, rigorous dynamic models able to
apture wide operating regions and strong dynamic transients are
equired. These models are described by large sets of highly com-
lex partial, differential and algebraic equations (PDAEs) (Häfele et
l., 2006).
In this work, we present a large-scale MHE strategy for
DPE tubular reactors. The approach incorporates a detailed first-
rinciples PDAE model. Section 2 presents the model details and
ection 3 describes issues related to the incorporation of the model
nto the MHE formulation. Section 4 describes the computational

t
r
F
m
a

p). Typical reactor core and jacket temperature profiles (bottom).

trategy used to solve the on-line MHE problem. Here, we propose
full discretization strategy of the reactor model based on orthog-
nal collocation on finite elements and implicit Euler schemes. We
ill see that this approach results into large-scale and sparse non-

inear programming (NLP) problems that can be solved efficiently
ith the state-of-the-art interior point solver IPOPT (Wächter &
iegler, 2006). Finally, we describe how to use the capabilities of
he IPOPT solver to analyze the convergence properties of the MHE
stimator. In Section 5, we analyze the practical performance of the
stimator in a typical scenario arising in the operation of industrial
DPE reactors. Here, we demonstrate that the on-line implementa-
ion of MHE strategies in LDPE reactors is computationally feasible.
he last section concludes the paper and presents directions for
uture work.

. Dynamic model of LDPE multi-zone tubular reactor

We consider a general first-principles dynamic model for multi-
one LDPE tubular reactors. The model involves conservation
quations describing the evolution of the reacting mixture at super-
ritical conditions in time and space. In addition, it incorporates
etailed energy balances for the reactor core, the reactor wall and
he countercurrent jackets. A very large number of complex semi-
mpirical correlations are used to estimate the thermodynamic
nd transport properties of the reacting mixture. A detailed free-
adical copolymerization mechanism is also incorporated and is
resented in Table 1. Here, symbols Ii with i∈ {1, . . . , NI}, R., M1, M2
nd Si with i∈ {1, . . . , NS} denote the initiators, radicals, monomer,
omonomer and chain-transfer agent (CTA) molecules, respec-
ively. Symbol fi represents the efficiency of initiator i. Symbols Pr,s

epresent “live” polymer chains ending with a monomer unit; with
monomer units and s comonomer units. Similarly, Qr,s are “live”
olymer chains with r, s degrees of polymerization but ending with
comonomer unit and Mr,s are “dead” polymer chains. The method
f moments is used to track the polymer macromolecular proper-
ies (Kiparissides et al., 1996). Empirical correlations are used to
ompute the end-use polymer properties such as the resin density
nd melt-index.

The proposed dynamic model is an extension of a previously
eported steady-state model used for off-line parameter estima-

ion. Several modifications to the overall energy balances in the
eactor were necessary and are described in detail in this section.
or a detailed description of the material balances and of the ther-
odynamic and transport equations, we refer the reader to Zavala

nd Biegler (2006).
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Table 1
Copolymerization kinetic mechanism of LDPE tubular reactor model.

Initiator(s) decomposition Incorporation of CTAs
Ii

fikdi→ 2R i = 1, NI Pr,s + Si
kspi1→ Pr+1,s i = 1, Ns

Chain initiation Qr,s + Si
kspi2→ Qr,s+1 i = 1, Ns

R. +M1
kI1→P1,0 Termination by combination

R. +M2
kI2→Q0,1 Pr,s + Px,y

ktc11→ Mr+x,s+y

Chain propagation Pr,s + Qx,y
ktc12→ Mr+x,s+y

Pr,s +M1
kp11→ Pr+1,s Qr,s + Qx,y

ktc22→ Mr+x,s+y

Pr,s +M2
kp12→ Qr,s+1 Termination by disproportionation

Qr,s +M1
kp21→ Pr+1,s Pr,s + Px,y

ktd11→ Mr,s +Mx,y

Qr,s +M2
kp22→ Qr,s+1 Pr,s + Qx,y

ktd12→ Mr,s +Mx,y

Chain transfer to monomer Qr,s + Qx,y
ktd22→ Mr,s +Mx,y

Pr,s +M1
kfm11→ P1,0 +Mr,s Backbiting

Pr,s +M2
kfm12→ Q0,1 +Mr,s Pr,s

kb1→Pr,sorQr,s

Qr,s +M1
kfm21→ P1,0 +Mr,s Pr,s

kb2→Qr,sorPr,s

Qr,s +M2
kfm22→ Q0,1 +Mr,s ˇ-scission of sec- and tert-radicals

Chain transfer to polymer Pr,s
kˇ1→M=r,s + P1,0

Pr,s +Mx,y
kfp11→ Px,y +Mr,s Pr,s

kˇ2→M=r,s + Q0,1

Pr,s +Mx,y
kfp12→ Qx,y +Mr,s Pr,s

k′
ˇ1→M=r,s + P1,0

Qr,s +Mx,y
kfp21→ Px,y +Mr,s Pr,s

k′
ˇ2→M=r,s + Q0,1

Qr,s +Mx,y
kfp22→ Qx,y +Mr,s

Chain transfer to CTAs
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Pr,s + Si
ksi1→P1,0 +Mr,s i = 1, Ns

Qr,s + Si
ksi2→Q0,1 +Mr,s i = 1, Ns

.1. Dynamic energy balances

We make use of Fig. 2 to illustrate the different components of
he dynamic energy balance equations. The dynamic responses of
he reacting mixture flowing inside the reactor are fast due to the
xtremely high velocities encountered (Kiparissides et al., 1993).
onsequently, it is safe to assume that the reacting mixture is at a
uasi-steady-state at all times. Accordingly, the evolution of reac-
or core temperature can be described by the following ordinary
ifferential equation,

�k(t, x) cpk(t, x) �k(t, x)
∂Tk

∂x

= �dinUin
k (t)

Ak
(TW

k (t, x)− Tk(t, x))−�HR(t, x) (1a)

k(t, 0) = T inlet
k (t) (1b)

he axial dimension along each one of the zones is denoted by

∈ [0, xL

k
] where xL

k
is the total length of a particular zone k. The

ime dimension is denoted by symbol t. The above system of
quations is defined for all the reactor zones k = 1, . . . , NZ . The
eacting mixture temperature at a particular zone is denoted by

Fig. 2. Schematic representation of reactor-wall-jacket interface.
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k and the wall temperature is represented by TW
k

. The mixture
ensity, heat capacity and velocity, are represented by �k, cpk and
k, respectively. The overall heat of polymerization generated by
hain propagation is represented by term �HR. The overall heat
ransfer coefficient at the core-wall interface is represented by
in
k , Ak denotes the inner cross-sectional area and din is the inner
iameter. The time-varying inlet temperature at a particular zone
inlet
k

(t) is computed through boundary conditions consisting of
nergy balances at the feed points.

The reacting mixture is cooled down through a jacket cooling
ystem. Due to the extremely high operating pressures, a thick
tainless steel wall exists at the interface. This results in a large
hermal capacitance that make the dynamic responses of the wall
uite slow (order of minutes). In addition, due to the large thickness,
here exists a temperature gradient across the radial position of the
all. A rigorous way to account for this would be to incorporate
two-dimensional energy balance along the axial and radial posi-

ions. However, this approach would result in a three-dimensional
DE defined at each zone, which would increase significantly the
omplexity of the reactor model. In order to avoid this, we follow
he approach of Häfele et al. (2006). Here, we assume that the entire
adial profile can be lumped into an average radial wall tempera-
ure. Accordingly, the wall temperature profile along the axial and
ime dimensions can be described by a parabolic PDE of the form,

�W
k (t, x) cW

p,k(t, x)
∂TW

k

∂t
− �W

k (t, x)
∂2TW

k

∂x2

=�dinUin
k (t)

AW
k

(Tk(t, x)− TW
k (t, x))−�doutUout

k (t)

AW
k

(TW
k (t, x)−TJ

k
(t, x))

(2a)

W
k (0, x) = TW,0

k
(x) (2b)

AW
k �W

k (t, x)
∂TW

k

∂x
(t, 0) = Q̇

in
k (2c)

AW
k �W

k (t, x)
∂TW

k

∂x
(t, xL

k) = Q̇
out
k (2d)

here TJ
k

denotes the temperature of the cooling water flowing

long the jacket at a particular zone k and TW,0
k

(x) are the initial
onditions of the wall temperature profile. Symbols �W

k
, cW

p,k
and

W
k

denote the density, heat capacity and thermal conductivity of
he stainless steel wall, respectively. The overall heat transfer coef-
cient at the interface between the wall and the jacket is denoted by
out
k , AW

k
is the cross-sectional area of the wall and the outer diame-

er is dout. The axial inlet and outlet heat conduction flows across the
all are denoted by Q̇

in
k and Q̇

out
k , respectively. It is important to note

hat there exists heat flow continuity at the zone boundaries. There-

ore, Q̇
in
k = Q̇

out
k−1, k = 2, . . . , N − 1. At the reactor extremes, the heat

ows Q̇
in
0 and Q̇

out
N can be calculated through natural convection

xpressions or can be assumed to be zero for a sufficiently long pipe.
Each reactor zone is equipped with an independent jacket cool-

ng system where cooling water flows countercurrently to the
eacting mixture inside the pipe. We assume plug flow in the jacket
nd negligible heat losses to the environment (perfect insulation).
ccordingly, the dynamic evolution of the cooling water tempera-

ure at each zone can be described by the following first-order PDE,

�J
k
(t, x) cJ

p,k
(t, x)

(
∂TJ

k − �J
k
(t, x)

∂TJ
k

)

∂t ∂x

= �doutUout
k (t)

AJ
k

(TW
k (t, x)− TJ

k
(t, x)) (3a)
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J
k
(t, xL

k) = TJ,inlet
k

(t) (3b)

J
k
(0, x) = TJ,0

k
(x) (3c)

here �J
k
, cJ

p,k
and �J

k
are the density, heat capacity and velocity of

he cooling water. The cross-sectional area of the jacket annulus is
enoted by AJ

k
. The time-varying inlet temperature of the cooling

ater is denoted by TJ,inlet
k

(t) and the initial conditions for jacket

emperature profile are given by TJ,0
k

(x).

.2. Dynamic model representation

To represent the overall dynamic model in simple terms, we col-
apse the PDAEs corresponding to material and energy balances,
hermodynamics and transport expressions and kinetic expres-
ions for all zones into a single set of PDAEs. This can be done by
rouping the states corresponding to all zones into a single vari-
ble vector and defining the continuity equations between zones
s algebraic equations. Following this reasoning, we represent the
ulti-zone reactor model as,

∂z

∂t
+ �(t, x)

∂z

∂x
+ �(t, x)

∂2z

∂x2
= fz(z(t, x), w(t, x), y(t, x), p(t), u(t))

(4a)

∂w

∂x
= fw(z(t, x), w(t, x), y(t, x), p(t), u(t)) (4b)

= fy(z(t, x), w(t, x), y(t, x), p(t), u(t)) (4c)

(t, x) = h(z(t, x), w(t, x), y(t, x), p(t), u(t)) (4d)

(0, x) = z0(x) (4e)

here z(t, x)∈�nz represents the differential states in space and
ime with initial conditions z0(x). These states correspond to the
ooling water temperature and the reactor wall temperature at
ll zones. Symbol w(t, x)∈�nw denotes differential states in space
uch as the reacting mixture temperature, the molar flow rates of
aseous components and the chain moments, among others. Sym-
ol y(t, x)∈�ny denotes the algebraic states corresponding to the
est of the model variables such as the cooling water and react-
ng mixture velocities, densities, heat capacities, among others.
ymbol p(t) denotes time-varying parameters used to account for
nmodeled effects and uncertainty. Symbol u(t) denotes the zone

nputs corresponding to side-stream inlet temperatures and flow
ates, among others. In the actual reactor, the inputs can only be
ed at the beginning and end of each reactor zone, so there is no
xplicit dependence on the internal spatial dimension x. For con-
enience, we also define a set of variables �(t, x)∈�n� to map the
odel states and inputs into the measured variables in the actual

DPE process. The number of actual equations depends on the
umber of gaseous components present in the reacting mixture
uring the production of a particular grade. On average, the model
ill contain 3 PDEs, 20 ODEs and 500 AEs defined at each reactor

one.
The boundary conditions of system (4) can be expressed in the

eneral form,

= ϕ

(
z(t, 0), z(t, xL),

∂z

∂x
(t, 0),

∂z

∂x
(t, xL), w(t, 0), u(t)

)
. (5)
. Moving horizon estimation

Since any mathematical abstraction of a real process is never
omplete due to uncertain phenomena or unmeasured distur-
mical Engineering 33 (2009) 379–390

ances, it is often necessary to use a filter or estimator to make the
odel useful in on-line environments. In this section, we present

he formulation of a MHE estimator for LDPE tubular reactor pro-
esses.

.1. Time-varying uncertainty and measurements

In LDPE processes, there exist multiple sources of uncertainty
hat are difficult to capture through the rigorous model. One of
he most important issues encountered is the persistent deposi-
ion of polymer on the internal walls along the reactor (Lacunza
t al., 1998). This fouling layer has poor conduction properties and
ends to dominate the overall heat transfer rate between the reactor
ore and the walls. It has been observed that the fouling resistance
an account for more than 80% of the overall heat transfer resis-
ance (Bokis, 2001). The deposition rate and distribution of polymer
epends on multiple factors which are difficult to explain from a
echanistic point of view. On the other hand, the availability of a

rst-principles model allows to map the sources of uncertainty to
hysical parameters that can be estimated on-line. In this work, we
rack the fouling deposition in time through the estimation of the
nternal heat transfer coefficients along each zone Uin

k (t). Another
mportant source of uncertainty is the continuous decay of the ini-
iator efficiency due to caging effects and undesired reactions with
mpurities (Luft et al., 1977). This uncertainty can be tracked by esti-

ating the efficiencies of all initiators in the reactor (Kiparissides
t al., 1996). While the proposed estimation strategy is general and
an handle decaying initiator efficiencies, we focus our attention to
he fouling problem.

A second issue arising in industrial LDPE units is that there
xists limited measurement information to infer the internal reac-
or phenomena. LDPE reactors are usually monitored and controlled
sing distributed measurements of the reactor core temperature.
typical industrial reactor can easily contain around a hundred

hermocouples. Measurements of the inlet and outlet tempera-
ures of the cooling water and the overall reactor conversion are
lso available. In some cases, it is also possible to obtain con-
inuous measurements of the polymer melt index. As part of
nput measurements, we include with the initiator, monomer and
hain-transfer agent side stream flow rates and temperatures as
ell as the inlet pressure of the reactor. The compositions of the

ide steams entering the reactor are calculated through material
alances.

.2. MHE problem formulation

Imagine that the LDPE process is currently located at sam-
ling time tj and we have a past input and output measurement
istory {
j, 
j−1, . . . , 
j−N} distributed over a time horizon con-
aining N sampling times of equal length ı = tj − tj−1. Using this
nformation, we seek to infer the current state of the reactor
(tj, x), w(tj, x), y(tj, x), the parameters p(tj) and, if needed, the rec-
nciled inputs u(t) through the rigorous model. We assume that the
odel structure is correct and that all the uncertainty related to the

eal process can be encapsulated in the model parameters p(t), in
he initial conditions z0(x) and in the measurement errors. Follow-
ng this reasoning, an estimate of the current state of the process
an be computed through the solution of a least-squares dynamic
ptimization problem of the form,

0 0 T −1 0 0
min
p(t),z0(x),u(t)

(z (x)− z̄ (x)) �0 (z (x)− z̄ (x))

+
N∑

j=1

Nm∑
i=1

(
(i)
j−N
− �(jı, xi))

T
R−1(
(i)

j−N
− �(jı, xi))

(6a)
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s.t.

∂z

∂t
+ v(t, x)

∂z

∂x
+ �(t, x)

∂2z

∂x2
= fz(z(t, x), w(t, x), y(t, x), p(t), u(t))

(6b)

∂w

∂x
= fw(z(t, x), w(t, x), y(t, x), p(t), u(t)) (6c)

= fy(z(t, x), w(t, x), y(t, x), p(t), u(t)) (6d)

(t, x) = h(z(t, x), w(t, x), y(t, x), p(t), u(t)) (6e)

≥ g(z(t, x), w(t, x), y(t, x), p(t), u(t)) (6f)

(0, x) = z0(x) (6g)

0 = ϕ

(
z(t, 0), z(t, xL),

∂z

∂x
(t, 0),

∂z

∂x
(t, xL), w(t, 0), u(t)

)
t ∈ [0 Nı]. (6h)

ote that the process measurements are only defined at discrete
oints in time jı, with sampling interval ı, and space xi. Symbol 
(i)

j

enotes the i th spatial measurement in vector 
j . The measure-
ent vector contains both output and input measurements with

ovariance R∈�n�×n� . The total number of measurements in space
s denoted by Nm. The MHE problem contains a large number of
egrees of freedom including the parameters, the initial conditions
or the dynamic states and the inputs. Variable z̄0(x) denotes the a
riori value of the initial state with covariance �0 ∈�nz×nz . The first
erm in the objective function is the arrival cost, which summarizes
ast measurement information before sampling time tj−N .

From the solution of the optimization problem, we
xtract the estimate of the current state of the process as
(tj, x)← z∗(ıN, x), w(tj, x)← w∗(ıN, x), y(tj, x)← y∗(ıN, x), the
urrent parameters p(tj)← p∗(ıN) and the reconciled inputs u(tj).
t the next sampling time tj+1, we avoid adding extra measure-
ents into an infinitely long estimation horizon by dropping the

ast measurement and incorporating the new one to obtain the
ew measurement history {
j+1, 
j, . . . , 
j+1−N}. Accordingly, we
pdate the a priori estimate of the initial state using the previous
olution as z̄0(x)← z∗(ı, x). In some cases it is also necessary
o update the covariance matrix �0 using the covariance of the
redicted state z∗(ı, x) in order to summarize past measurement

nformation and to ensure stability and convergence of the esti-
ator (Rawlings & Bakshi, 2006). However, this update might not

e required if the system satisfies strong observability conditions
Alessandri, Baglietto, & Battistelli, 2008).

Note that the MHE formulation considered in this work assumes
perfect model of the plant. Structural model mismatch can be

onsidered by extending the formulation with appropriate distur-
ance models. A serious limitation that is normally attributed to
HE is that it requires on-line solutions of large-scale optimization

roblems. Since this is a time-critical application, the optimization
roblem needs to be solved as quickly as possible. In the follow-

ng section, we propose a solution strategy that allows to solve the
n-line MHE problem in a reasonable amount of time.

. Solution strategy

We propose a full discretization approach to solve the infinite-
imensional MHE problem (6). This approach enjoys a favorable
omputational complexity and allows to handle the complex

oundary conditions encountered across the reactor (Biegler,
ervantes, & Wächter, 2002). Upon full discretization, the MHE
roblem is cast as a general NLP problem in purely algebraic form.

n this section, we discuss the different components of this solution
trategy.

w
M

f
i

ig. 3. Schematic representation of discretization approach. Reactor core (top) and
acket (bottom).

.1. Discretization

As can be seen in Fig. 1, LDPE reactor models present steep tem-
erature profiles in space. In addition, the model presents steep
rofiles for some gaseous components such as the initiators that
re totally consumed immediately after they are injected into the
eaction zones. On the other hand, the quasi-steady-state assump-
ion for the reactor core eliminates stiffness problems along the
ime dimension. Motivated by these observations, we use a fine
iscretization mesh in space and a coarse mesh in time. We fol-

ow a finite element discretization approach at Radau collocation
oints in the space dimension (Biegler et al., 2002). An advantage
hat Radau collocation provides is that the last collocation point

atches the terminal spatial coordinate. This allows to impose
he multi-point boundary conditions across the reactor zones in
straightforward manner. In Fig. 3, we present a conceptual repre-

entation of the discretization approach for the reactor and jacket
emperature profiles of a particular zone.

For the actual implementation, we use an average of 10 finite
lements for the reaction zones and 2 finite elements for the
ooling zones. Three collocation points are used. Upon spatial dis-
retization, the PDAE reactor model translates into a DAE model
ontaining around 9000–10,000 DAEs in time. For time discretiza-
ion, we use an implicit Euler (1 pt. Radau) scheme and place the
iscretization points at the sampling times. An average of 5 points
re used. With this, the DAE model is converted into an algebraic
odel with around 40,000–50,000 equations. The algebraic model

s very sparse. On average, the Jacobian contains around 10 non-
ero entries per row. That is, only 10 variables out of 40,000–50,000
ppear in each equation on average.

.2. Interior-point NLP solver

The discretized MHE problem presents a natural forward struc-
ure in time that could be exploited with tailored strategies such
s Riccati-like recursions (Zavala, Laird, & Biegler, 2008). How-
ver, the computational complexity of this approach will not be
avored due to the large number of dynamic states resulting from
he spatial discretization. In addition, due to the high nonlinear-
ty and ill-conditioning of the LDPE model, a more general NLP
olver equipped with the required numerical capabilities is pre-
erred. Because of these reasons, we solve the MHE problem as a
eneral NLP problem of the form,

in
x

f (x) (7a)

.t. c(x) = 0 (7b)

≥ 0. (7c)
here variable x∈�nx contains all the discretized variables of the
HE problem.
Full-space interior-point solvers have become a popular choice

or the solution of large-scale and sparse NLPs as those arising
n this application. There exist several solvers available such as
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OQO, KNITRO and IPOPT (Benson, Shanno, & Vanderbei, 2002;
yrd, Gilbert, & Nocedal, 2000; Wächter & Biegler, 2006). In this
ork, we use the open-source solve IPOPT to implement our devel-

pments.
As with any interior-point solver, IPOPT handles the inequality

onstraints of problem (7) implicitly by adding barrier terms to the
bjective function,

in
x

f (x)+�

nx∑
i=1

ln(x(i)) (8a)

.t. c(x) = 0 (8b)

here x(i) denotes the i th component of vector x. Solving (8) for a
ecaying sequence of �→ 0 results in an efficient strategy to solve
he original NLP (7). At a particular value of �, IPOPT tries to solve
he Karush-Kuhn-Tucker (KKT) conditions of the barrier problem
8),

xf (x)+∇xc(x)�− � = 0 (9a)

(x) = 0 (9b)

· V e = �e (9c)

here X = diag(x), V = diag(�) and e∈�nx is a vector of ones. Sym-
ols �∈�� and �∈�nx are Lagrange multipliers for the equality
onstraints and bounds, respectively. The gradient of the objec-
ive function is∇xf (x)∈�nx while∇xc(x)∈�nx×n� is the constraint
acobian. To solve this system of nonlinear equations, IPOPT applies
ewton’s method. At each iteration i, the search direction for the
rimal x and dual �, � variables is computed by linearization of the
KT conditions (9),

Hi Ai −Inx

Ai
T 0 0

Vi 0 Xi

⎤
⎥⎦
⎡
⎢⎣

�xi

��i

��i

⎤
⎥⎦ = −

⎡
⎢⎣
∇xf (xi)+ Ai�i − �i

c(xi)

XiVie−�e

⎤
⎥⎦ (10)

here Ai := ∇xc(xi). Matrix Hi ∈�nx×nx is the Hessian of the
agrange function L = f (xi)+ c(xi)

T �i − �T
i
xi evaluated at the cur-

ent iteration and Inx is the identity matrix. We provide exact
essian and Jacobian information to IPOPT through the modeling
latform AMPL (Fourer, Gay, & Kernighan, 1992). With this, we guar-
ntee fast local convergence of Newton’s method and we are able to
andle problems with many degrees of freedom without altering
hese local convergence properties.

Computing the search direction from (10) is the most expensive
tep in the algorithm since it involves the factorization of the KKT
atrix on the right-hand side. Note that the KKT matrix implic-

ty incorporates the Jacobian of the large-scale discretized PDAE
odel which is very sparse. In order to solve this linear system,
e follow a direct sparse factorization approach. With this, we

xploit only the sparsity pattern of the KKT matrix. The compu-
ational complexity of this strategy is in general very favorable,
caling nearly linearly and at most quadratically with the overall
imensions of the NLP (e.g. length of estimation horizon, num-
er of states and number of degrees of freedom). In the context of

arge-scale state estimation, this favorable complexity makes MHE
ore attractive than traditional Kalman-like estimators (Zavala,

aird, & Biegler, 2007). On the other hand, significant fill-in and
omputer memory bottlenecks might arise during the direct fac-

orization strategy if the sparsity pattern is not properly exploited.
n order to factorize the KKT matrix, we use the linear solver MA57
rom the Harwell library (Duff, 2004). Since the structure of the KKT

atrix does not change between iterations, the linear solver needs
o analyze the sparsity pattern only once. During this analysis phase,

U
f
w
t

mical Engineering 33 (2009) 379–390

he linear solver permutes the matrix to reduce fill-in and com-
uter memory requirements in the factorization phase. Different
eordering strategies can be used in MA57. The default strategy is an
pproximate minimum degree (AMD) ordering algorithm. Another
trategy is a nested dissection (ND) algorithm based on the multi-
evel graph partitioning strategy, implemented in Metis (Karypis &
umar, 1999). For very large problems such as those arising from
DE-constrained optimization, nested dissection excels at identify-
ng high-level (coarse-grained) structures and thus plays a crucial
ole in the factorization time and reliability of the linear solver.

IPOPT also applies a regularization scheme of the Hessian matrix
o account for directions of negative curvature which are com-

only encountered in ill-posed and/or highly nonlinear NLPs. From
practical point of view, it is particularly useful to monitor the reg-
larization term of the Hessian matrix. If this regularization term

s zero at the solution, we can guarantee that the optimal point
s a well-defined minimum satisfying strong second order condi-
ions (Nocedal & Wright, 1999). In other words, the reduced Hessian
Hessian projected into the null-space of the Jacobian of the active
onstraints) is positive definite. In the context of estimation prob-
ems, this implies that the measurements are informative enough
o infer or observe the degrees of freedom (e.g. parameters, initial
onditions, inputs) (Bard, 1974).

.2.1. Covariance information extraction
In MHE problems, we are also interested in quantifying the

bservability of the estimated states and parameters. This can be
one by analyzing the principal components of the reduced Hessian
atrix at the solution of the problem. In order to extract reduced
essian information from IPOPT, we make use of a recently imple-
ented capability for post-optimal analysis. The main idea is to

econstruct the reduced Hessian using backsolves with the KKT
atrix evaluated at the solution (Zavala et al., 2008). To explain

he mechanics of this, we split the variable vector as xT = [x̄Tx̂T]
here x̄ is a vector of dependent variables and x̂ is a vector of inde-
endent variables of the same dimension as the number of degrees
f freedom of the NLP. According to this variable partition, the Jaco-

ian can be rearranged as AT = [Ax̄
∗

T|Ax̂
∗

T
] where Ax̄

∗ is a nonsingular
quare matrix. Following this reasoning, we can represent the KKT
ystem (10) evaluated at the solution as,

Hx̄x̄
∗ Hx̄x̂

∗ Ax̄
∗

Hx̂x̄
∗ Hx̂x̂

∗ Ax̂
∗

Ax̄
∗

T
Ax̂
∗

T
0

⎤
⎥⎥⎦
⎡
⎢⎣

�x̄

�x̂

��

⎤
⎥⎦ = −

⎡
⎢⎣

rx

rx̂

r�

⎤
⎥⎦ . (11)

ere, notice that we have eliminated the terms corresponding to
ariable bounds in order to simplify the presentation. In addition,
ote that the right hand sides are zero at the solution of the NLP. It is
ossible to prove that, if we set rx = r� = 0 and rx̂ to the j th column
f the identify matrix Inx̂

(:, j) then, the search step �x̂ becomes the
th column of the inverse of the reduced Hessian matrix. In other
ords,

x̂ = (ZTH∗Z)
−1

(:, j) (12)

here Z is a null-space matrix of the full Jacobian A∗with structure,

=
[
−Ax̄−1

∗ Ax̂
∗

I

]
. (13)
x̂

sing this property, we can extract reduced Hessian information
rom the full-space NLP solver inexpensively through backsolves
ith the already factorized KKT matrix. It is also possible to prove

hat, if we place the identity matrix Inx̂
on the rows corresponding
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for the heat transfer coefficient of Zone 1. In the middle graph, we
see that the closed-loop initiator flow rate of Zone 1 drops during
the first transition and then increases during the second transition.
This is done in order to decrease the reactor conversion and keep
the temperature profile as close as possible to the reference profile.
Fig. 4. Schematic representation of warm-starting strategy.

o the state z∗(ıN, x) from MHE problem (6a), the resulting matrix
ecomes the covariance of the current state estimates �N (Zavala
t al., in press).

.2.2. Warm-starting strategy
Moving horizon problems have the important property that sub-

equent problems are closely related to each other. This fact can
e used to find good starting points or warm-starts to the cur-
ent MHE problem (Zavala et al., 2007). A well-known strategy
s to shift the optimal values of the states and KKT multipliers
orward in time. When the model predictions are accurate and
rocess disturbances are moderate, this strategy can significantly
educe the number of iterations (Diehl, Bock, & Schlöder, 2005;
avala et al., 2008). While warm-starting strategies work well in
ctive-set solvers, in interior-point solvers it is necessary to mod-
fy some of the default algorithmic options to take advantage of
his. To explain these concepts, we consider the scenario sketched
n Fig. 4. Consider the solution of the current MHE problem s∗

j
at

ime tj obtained from solving a sequence of barrier problems (8)
hat form the so-called central path. From the solution, we also
now which subset of the primal variables is at the bounds (active-
et).

In order to warm-start the next problem at tj+1, we shift the
ariables and KKT multipliers forward in time to generate the
arm-start point s̃j+1. Variable shifting is important in order to have
good estimate of the right active-set. In interior-point solvers, we

earch for the optimal active-set by moving from the interior of the
easible region towards the boundary. Because of this, interior-point
olvers push the warm-start point sufficiently inside the feasible
egion. As a consequence, even if we have with a good warm-
tarting point with the correct active-set, the interior-point solver
ill take several iterations to converge to the new solution s∗

j+1. This
nconsistency can be avoided by setting the barrier parameter � to

small value and making sure that the solver does not push the
arm-start point.

. Industrial case study
In this section, we analyze the performance of the MHE esti-
ator in typical scenarios arising in industrial LDPE reactors. In

articular, we analyze the convergence properties of the MHE esti-
ator in the presence of poor initial guesses of the states and in the

ace of measurement noise on both inputs and outputs. Finally, we
iscuss the computational performance of the strategy.

F
(

ig. 5. Description of case study. Defouling–fouling cycle for inner heat transfer
oefficient of Zone 1 (top). Closed-loop response of initiator flow rate of Zone 1
middle). Dynamic response of reactor core temperature profile (bottom).

.1. Estimator performance

LDPE tubular reactors undergo periods where the polymer layer
s defouled by means of pressure or thermal shocks (Buchelli et
l., 2005a). Since this results in a fluctuating heat transfer capacity
f the reactor wall, the control system needs to adjust the multi-
le reactor inputs (e.g. inlet temperatures, initiators) to keep the
eactor temperature profile at target. In this work, we simulate
his closed-loop behavior during two transients of the heat trans-
er coefficients to generate measurement information and to obtain
he true reference state of the reactor. We use real industrial values
f the reactor inputs and outputs obtained from a previous param-
ter estimation study (Zavala & Biegler, 2006). Consequently, we
cale the values of all variables.

The base case study is presented in Figs. 5 and 6. To simulate
he cleaning-fouling cycle, we ramp the heat transfer coefficients
or all the reactor zones from their nominal value to+ 50% at time
tep 25 and then −20% at time step 50. Each time interval ı cor-
esponds to 5 min of operation. We use an estimation horizon of 5
ime steps. In the top graph of Fig. 5, we present the resulting profile
ig. 6. Description of case study. Dynamic response of jacket temperature profile
top). Dynamic response of wall temperature profile (bottom).
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the wall temperature can be inferred more reliably close to the
reactor inlet (smaller covariance values) than downstream of the
reactor. In addition, note that the levels of the covariance profiles
decay quickly as the estimation horizon is increased. In the bot-
tom graph, we plot the maximum eigenvalue of the covariance
86 V.M. Zavala, L.T. Biegler / Computers an

n the bottom graph, we see that the temperature profile does not
ove significantly from its reference value. The most significant

ffects can be appreciated at the end of the first four zones (reac-
ion) and in the last two zones (cooling). In the same graph, we
lso indicate the zones boundaries and the specific location of the
hermocouples measuring the reactor core temperature. Note that
here exist zones (e.g. beginning of Zone 1) where we have only a
ew measurements available to shape the temperature profile.

While the reactor temperature profile does not change signifi-
antly during the fouling cycle, in the top graph of Fig. 6 we can see
hat the jacket temperature profile increases significantly during
he first transition. In other words, as the heat transfer coefficients
ncrease in time (fouling layer disappears), the cooling water is able
o remove more heat from the reactor core and this translates in
ncreasing temperature levels on the jacket side. In addition, note
hat we only have measurements at the beginning and end of each
acket to help us shape the jacket temperature profile. Finally, note
hat the dynamic responses of the jackets are fast. At the second
ime step (t2), the jacket profile is already far away from the origi-
al profile (t1). This is in sharp contrast with the dynamic response
f the wall temperature profile presented in the bottom graph of
ig. 6 where we can appreciate a smoother transition in time.

.1.1. Nominal case
The simulation results provide the dynamic profiles for all the

nputs distributed across the reactor and corresponding states that
e use as the true states to test the estimator. To analyze the nom-

nal performance of the estimator, we consider the case with the
rong a priori guess of the wall and jacket profiles and heat transfer

oefficients at time t0. In addition, we assume that no measurement
oise is present. We use the initial guess and the available measure-
ent information to reconstruct the dynamic profiles for the heat

ransfer coefficients and all the state profiles of the process. We
onsider two scenarios. In scenario 1, we generate the initial guess
or the wall and jacket temperature profiles by perturbing the true
rofiles by −10%. In absolute values, this corresponds to a pertur-
ation of approximately −20 ◦C to a reference value of 40 ◦C (i.e.;
ur guess of the profile is underestimated by 20 ◦C). In scenario
, we perturb the initial guess of the wall and jacket temperature
rofile by a Gaussian zero-mean disturbance with a standard devi-
tion of 20 ◦C. In both scenarios, we also perturb the initial guess
f the heat transfer coefficients by +50%. The results are presented
n Figs. 7 and 8. In the top graph of Fig. 7 we can observe that the
stimator is able to converge to the true value of the heat transfer
oefficients (in this graph we only present the value of the first reac-
ion zone in scenario 1). In the middle graph, note that the initial
uess of the wall temperature profile in scenario 1 is shifted and the
stimator is able to converge to the true wall temperature profile
t sampling time t5. In the bottom graph, we note the large distur-
ances added to the initial guess of the wall profile in scenario 2.
he estimator is also able to reconstruct the true wall temperature
rofile at around time t5.

In the top graph of Fig. 8 we demonstrate that the estima-
or also converges to the true jacket temperature profile. In the

iddle graph, we can observe that the available temperature
easurements provide enough information to reconstruct the con-

entration of radicals across the reactor at the first sampling time
1. Here, it is also possible to identify the addition of initiator flow
ates at the beginning of each reaction zone and the fast consump-
ion. In the bottom graph of Fig. 8 we see that the temperature

rofile provides enough information to infer quickly the polymer
elt index at reactor outlet. These results are quite surprising as

n many processes temperature measurements are not sufficient to
nfer all the model states. In contrast, it seems that the shape of the
emperature profiles arising in LDPE reactors presents a significant

F
C
i
i

ig. 7. Convergence properties of MHE estimator for perturbations on initial guess.
onvergence to heat transfer coefficient of first reaction zones in scenario 1 (top).
onvergence to wall temperature profile in scenario 1 (middle) and scenario 2 (bot-
om).

egree of excitation at each reaction zone that tends to make the
ata highly informative.

The solution of all the NLPs (7) considered satisfy second order
onditions indicating that the process is observable under the
vailable measurement information. To quantify the observabil-
ty properties of the reactor, we perform a numerical analysis of
he covariance matrix of the estimated wall temperature profile
�N) for different values of the estimation horizon N. The results
re presented in Fig. 9. In the top graph, we plot the diagonal
lements of the covariance matrix corresponding to each wall tem-
erature along the reactor. As a first observation, it is clear that
ig. 8. Convergence properties of MHE estimator for perturbations on initial guess.
onvergence to jacket temperature profile in scenario 1 (top). Convergence to rad-

cals concentration profile at time step t1 (middle). Convergence to polymer melt
ndex at the reactor outlet (bottom).
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the measurements of the inlet cooling water temperatures with
Gaussian noise with � = ±3 ◦C. Accordingly, we define all these
inputs as degrees of freedom in the NLP. In addition, we incorporate
the corresponding least-squares terms to the objective function
ig. 9. Effect of estimation horizon length on convergence of estimator. Covariance
f wall temperature profiles for different horizon lengths N (top). Decay of maximum
igenvalue of covariance matrix for different measurement scenarios (bottom).

atrix �max(�N) as a function of the estimation horizon. We com-
are three cases. The first case involves the estimator using the
ull measurement information available (core and jacket temper-
tures, inputs and conversion). The profile is presented as a solid
ray line. Note that the maximum eigenvalue decays very quickly
s the horizon length is increased. Five time steps seem to be suffi-
ient to obtain a reliable estimate of the wall profile. In the second
ase, we eliminate the conversion measurement from the objec-
ive function (dashed black line). Note that the covariance of the
all profile is not affected by this modification, implying that the

onversion measurement is redundant. In the third case, we elimi-
ate one third of the reactor core measurements distributed along
he reactor. Note that this change strongly affects the covariance of
he estimated states. This demonstrates the crucial role that the
emperature profile plays on the observability properties of the
eactor.

.1.2. Output noise filtering
We demonstrate the performance of the estimator for cases in

hich random Gaussian noise is added to the temperature mea-
urements. In the first scenario, we add noise with a standard
eviation � = ±3 ◦C to each thermocouple measurement. This is
fairly standard noise level encountered in industrial reactors. In

he second scenario we increase the level of noise to ±5 ◦C. In both
cenarios, the corresponding diagonal elements of the covariance
atrix R are set to (1/�2). The results are presented in Fig. 10. As

an be seen, the estimator is able to reject the measurement noise
nd reconstruct the profile of the heat transfer coefficients.

.1.3. Input noise filtering
It is well-known that input measurement noise leads to biased

tate estimates. To illustrate this, we consider the scenario in which
he inlet temperature of the cooling water of all the zones is con-
aminated with Gaussian noise with � = ±3 ◦C. The results are
resented in Fig. 11. In the top graph, we illustrate the inlet cooling
ater temperature corrupted with noise. In the middle graph, we

an see that the input noise disrupts the convergence of the esti-

ator to the true jacket temperature profile at time t50 (top graph).

he estimate is biased. In the bottom graph, we observe that input
oise also degrades the convergence of the estimator to the true
eat transfer coefficients.

F
j
Z

ig. 10. Effect of output noise on performance of estimator. Output noise on reactor
ore temperature with � = ±3 ◦C and convergence to heat transfer coefficients (top).
utput noise with � = ±5 ◦C and corresponding heat transfer coefficients (bottom).

In order to filter input noise, the values of the input variables
an be reconciled simultaneously in the estimator formulation.
n parameter estimation literature, this is known as an errors-
n-variables-measured (EVM) formulation. While this approach
resents many advantages, it has been traditionally avoided in

arge-scale applications as it gives rise to optimization problems
ith many degrees of freedom (e.g. all side stream flow rates and

emperatures along the reactor zones). In the proposed computa-
ional strategy, we are able to handle a relatively large number of
egrees of freedom. This has enabled us to analyze the potential
enefits of EVM-MHE formulations. In order to do this, we corrupt
ig. 11. Effect of unrejected input noise on performance of estimator. True and noisy
acket inlet temperatures for Zone 1 (top). Estimated heat transfer coefficient for
one 1 (middle). Biased estimates of wall temperature profile (bottom).
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ig. 12. Effect of rejected input noise on performance of estimator. True, reconciled
nd noisy jacket inlet temperatures for Zone 1 (top). Estimated heat transfer coeffi-
ient for Zone 1 (middle). Unbiased estimates of wall temperature profile (bottom).

nd modify the corresponding diagonal elements of the covariance
atrix R. In the top graph of Fig. 12, we can see that the estimator is

ble to filter out the input noise and infer the true input. In the mid-
le graph, we see the resulting smoother convergence of the heat
ransfer coefficients to the true value, compared to those observed
n Fig. 11. In the bottom graph, we see the bias elimination on the
acket temperature profile through the EVM formulation.

.2. Computational results

In Table 2, we present some characteristics of the NLPs resulting
rom the full discretization of the MHE problem and corresponding
verage solution times. All numerical calculations were performed
n a 64-bit Sun Workstation with a Dual-Core processor running
t 2.4 GHz. Linux is the operating system. The IPOPT solver is run
ith a fixed barrier parameter of 1× 10−6 and the tolerance is set

o 1× 10−3. We use the default preordering strategy (approximate
inimum degree ordering-AMD) in MA57 during the factorization

f the KKT matrix.
As an example, we consider a standard MHE problem with an
orizon of 5 time steps and where the discretized initial profiles of
he wall and jacket temperatures and the heat transfer coefficients
re the degrees of freedom (DOF). The resulting NLP problem con-
ains 40,390 constraints, 528 DOF and 4310 variable bounds. An
LP with these characteristics converges in 4 iterations and takes

i
o
o
s
(

able 2
haracteristics of NLP problems and average solution times.

orizon N Type Constraints DOF

1 Standard 8078 432
1 EVM 8142 457

3 Standard 24234 480
3 EVM 24426 555

5 Standard 40390 528
5 EVM 40710 653

8 Standard 64624 600
8 EVM 65136 800

10 Standard 80780 648
10 EVM 81420 898

MD preordering strategy used for factorization of KKT matrix.
ig. 13. History of solution times for average MHE problem with 5 time steps and
28 degrees of freedom (top). Average solution times as a function of the horizon

ength for standard MHE formulation (bottom).

round one minute. In the top graph of Fig. 13, we illustrate the solu-
ion time history for a particular MHE scenario. The largest problem
olved using the standard MHE formulation contains an horizon of
0 time steps, 80,780 constraints and 648 DOF. On average, this
roblem can be solved in 4 iterations and 3 min. Based on these
esults, it is clear that the implementation of the MHE strategy is
omputationally feasible.

For the EVM-MHE formulations, the number of DOF increases
ith the estimation horizon. From Table 2, it is interesting to

bserve that the number of iterations taken by the NLP solver is not
ffected by this. This is a direct consequence of using exact second
erivative information to compute the Newton steps. Nevertheless,
n unexpected result is that the solution time of the EVM problems
ncreases significantly with the size of the estimation horizon. In
articular, notice that the EVM problem with an horizon of 8 time
teps takes around 17 min to solve (around 4.5 min per iteration).
owever, note that the number of DOF in the standard counterpart

s already very large and the problem can be solved in less than
min. From this observation, it seems that the number of DOF is
ot per se the source of the increase in the computational cost. In
his case, the difference can be attributed to structural changes of
he KKT matrix due to the addition of certain DOF such as the ini-
iator flow rates and inlet temperatures. These structural changes
eem to make the factorization of the KKT matrix more expensive
o the linear solver, compared to the standard MHE formulation.
n particular, it was found that the AMD preordering strategy is
ot able to account for these structural changes efficiently. For

nstance, for a standard MHE problem with an estimation horizon
f 5 time steps, the number of nonzero entries in the KKT matrix
s 636,185. After factorization with AMD preordering, the number

f nonzero elements increases to 7,478,625. This gives a fill-in ratio
f 7,478,625/636,185≈11.75. For an EVM-MHE problem with the
ame estimation horizon, the sparsity of the KKT matrix is similar
659,618 nonzero entries). However, the number of nonzero entries

Total time [s] Iterations Time/iteration [s]

8.707 4 2.17
9.175 4 2.29

23.83 4 5.95
28.81 4 7.20

56.76 4 14.90
143.38 4 35.84

97.69 4 24.42
1064.57 4 266.14

188.21 4 47.05
3079.45 4 769.86
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Table 3
Solution times of EVM problems using AMD and ND preordering strategies.

Horizon N Total time AMD [s] Total time ND [s]

1 9.175 8.46
3 28.81 24.61
5 143.38 39.91
8 1064.57 81.54

10 3079.45 126.69
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n the factors increases significantly (12,313,932). In other words,
or two NLPs with nearly the same dimensions, the addition of par-
icular variables as DOF can nearly double the fill-in ratio and thus
ncrease the solution time by a factor of 2 or more.

Motivated by the rather poor performance of the AMD reorder-
ng in the EVM problems, we tested the performance of the nested
issection (ND) preordering strategy. The total solution times for
D are contrasted against those of AMD in Table 3. All problems
ere solved in 4 iterations. The solution times clearly illustrate

he superiority of the ND preordering in identifying the structural
hanges of the EVM formulation. In particular, the solution time of
n EVM problem with 10 time steps can be reduced by a factor of
0. In addition, note that the total solution times of ND strategy in
he EVM problems are shorter than those of the AMD for the stan-
ard MHE formulation of Table 2. The largest EVM problem solved
ith ND contains 20 time steps in the estimation horizon. This cor-

esponds to an NLP with 162,840 constraints and 1388 DOF that
an be solved in around 4 min. From these results it is possible to
onclude that the ND strategy is, in general, much more efficient in
xploiting the structure of the KKT matrix.

. Conclusions and future work

In this work, we have presented a computational strategy that
llows the implementation of moving horizon estimation (MHE)
trategies in low-density polyethylene (LDPE) tubular reactors. The
stimator is built around a detailed dynamic model of the reactor
escribed by large sets of nonlinear partial, differential and alge-
raic equations. To solve the resulting large-scale MHE problem,
e follow a full discretization approach. This results in a sparse
onlinear programming (NLP) problem that can be solved with
tate-of-the art NLP solvers. The practical benefits of the MHE esti-
ator are demonstrated in an industrial scenario arising in the

peration of LDPE reactors. It was found that limited tempera-
ure measurements distributed along the reactor provide sufficient
nformation to infer all the model states and to track time-varying
ouling phenomena. The estimator exhibits strong convergence
roperties, recovers from poor initial guesses of the states and
arameters and requires relatively short estimation horizons. In
ddition, we demonstrate the potential benefits of using errors-
n-variables-measured (EVM) formulations to filter out output and
nput measurement noise simultaneously through the MHE esti-

ator. Finally, we demonstrate that the implementation of these
trategies is computationally feasible.

As part of future work, we plan to embed the estimator within
Nonlinear Model Predictive Control (NMPC) application to opti-
ize the operation of LDPE reactors. For this, we will accommodate

he MHE estimator in a real-time environment by making use of

ecently proposed on-line synchronization strategies (Zavala et al.,
007, in press). These strategies shift the solution time of the MHE
roblem to the background period between sampling times and
hus allow to obtain nearly instantaneous state estimates that can
e used to compute fast control actions. Finally, an interesting area

W
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mical Engineering 33 (2009) 379–390 389

f future research is the consideration of advanced MHE formula-
ions able to account for gross errors and process noise.
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